As a math student, it’s inefficient to reinvent the wheel like engineering
students. Thanks to three existing examples, I had convinced myself that I
could bring this to the theme Beautiful Hugo.
Posted on November 17, 2018
(Last modified on February 17, 2021)
| 5 minutes
|
|
1 comment
Vision
gain autonomy: freedom is the basis of moral actions. No freedom, no
morality.
transcend ourselves: change/improve our lives through free thoughts
Goal
Convert our free thoughts into free code.
Free code allows users around the world to run and/or improve them. This would
bring real enhancement to our tools.
For example, beautiful math writing used to be a complicated process. A decade
ago, this required the installation of a typesetting engine called $\LaTeX$.
Thanks to freely available scripts like MathJax and $\KaTeX$, it’s now
possible to write math viewable by any modern web browser by writing the content
in the middle.
where ${\bf p}_i \in \R^n$ for all $i \in \{1,\dots,k\}$.
In particular, $\sigma({\bf 0})={\bf p}_0$ and for each $i\in\{1,\dots,k\}$,
$\sigma({\bf e}_i)={\bf p}_i$.
De nos jours, je trouve la façon dont ils l’ont écrit assez difficile à
comprendre. Je suis plus à l’aise avec $\sup$ que “b.s.” que désigne “borne
supérieure”. Ils se sont servi de $M[f]$ pour $\lVert f \rVert_{\rm Lip}$, où
La mesurabilité de l’application dans le sous-titre est basée sur l’égalité
suivante.
$$
\Bor{\R}{\OXT} \cap \CO = \Bor{\CO}
$$
J’ai passé quatres heures pour comprendre
pourquoi ça entraîne la mesurabilité ?
pourquoi l’égalité elle-même est vraie ?
Réponses
Mesurabilité de la trace sur $\CO$ de $\Bor{\R}{\OXT}$
A la première lecture, je ne connaisais même pas la définition de la trace
d’une tribu sur un emsemble. En effet, c’est une définition universaire sur
des ensembles, selon une question sur la trace sur Math.SE.
Posted on October 7, 2018
(Last modified on February 16, 2021)
| 1 minutes
|
|
1 comment
Motivation
The books that I read in the past didn’t explain what a dataframe meant.
Definition
Dataframe
A table of data in which the values of each observed variable is contained in
the same column.
Counterexample
I’ve difficulty in reading long lines of text like the above definition, so
let’s illustrate this definition with a counterexample.
We have carried out repeated experiments with four types of things and obtaine
some data. (Say, poured some liquid into an empty cup and take the temperature.)
Posted on October 5, 2018
(Last modified on February 16, 2021)
| 2 minutes
|
|
0 comment
Ultra filter
A filer $\mathcal{F}$ containing either $Y$ or $Y^\complement$ for any
$Y \subseteq X$.
Two days ago, I spent an afternoon to understand Dudley’s proof of this little
result.
A filter is contained in some ultrafilter. A filter is an ultrafilter iff
it’s maximal.
At the first glance, I didn’t even understand the organisation of the proof!
I’m going to rephrase it for future reference.
only if: let $\mathcal{F}$ be an ultrafilter contained in another filter
$\mathcal{G}$. If $\mathcal{F}$ isn’t maximal, let $Y \in \mathcal{G}
\setminus \mathcal{F}$. Since $\mathcal{F}$ is an ultrafilter, either $Y \in
\mathcal{F}$ or $Y^\complement \in \mathcal{F}$. By construction of $Y$, only
the later option is possible, so $Y^\complement \in \mathcal{G}$ by hypothesis,
but this contradicts our assumption $Y \in \mathcal{G}$: $\varnothing = Y \cap
Y^\complement \in \mathcal{G}$, which is false since $\mathcal{G}$ is a
filter.
Posted on October 3, 2018
(Last modified on February 16, 2021)
| 3 minutes
|
|
0 comment
Problem
To show that a measure $\mu$ defined on a metric space $(S,d)$ is regular.
outer regularity: approximation by inner closed sets
inner regularity: approximation by outer open sets
Discussion
Since this problem involves all borel sets $A \in \mathcal{B}(S)$, the direct
way $\forall A \in \mathcal{B}(S), \dots$ won’t work. We have to use the
indirect way: denote $$\mathcal{C} = \lbrace A \in \mathcal{B}(S) \mid
\mathinner{\text{desired properties}} \dots \rbrace.$$ Show that