Finite Population Sampling without Replacement
Personal note of finite population sampling
Posted on April 26, 2019
(Last modified on February 17, 2021)
| 2 minutes
|
|
0 comment
First moment
Population: $ \Omega = \{ x_1, \dots, x_N \} $
Collection of $n$-samples:
$\mathcal{S} = \{ s \in \Omega^n \mid \forall i,j \in s, i \ne j \} $
Collection of $n$-samples containing $x$:
$ \mathcal{S}_x = \{ s \in \mathcal{S} \mid x \in s \} $
Observe that $ |\mathcal{S}_x| = \binom{N-1}{n-1} $.
Let population mean be zero. $\mu = 0$, i.e. $ \sum_{i = 1}^N x_i = 0 $
Fix an order for $\mathcal{S}$:
$ \mathcal{S} = \{ s_1, s_2, \dots, s_{|\mathcal{S}|} \} $.
$j$-th $n$-sample mean $ m_j = \frac1n \sum_{x \in \mathcal{S}_j} x $
Remark: I don’t use $ \sum s_j $ as in $ \cup \mathcal{T} $ in topology to
avoid misreading the $n$-sample $ s_j $ as an element.
mean of $n$-sample mean
$ m = \frac{1}{|\mathcal{S}|} \sum_{s_j \in \mathcal{S}} m_j $
[Read More]
Borel Cantelli Exercise 2019
Posted on February 4, 2019
(Last modified on February 16, 2021)
| 1 minutes
|
|
1 comment
I intend to post this for a Borel-Cantelli lemma exercise on
Math.SE.
The target event is ${\exists i_0 \in \Bbb{N} : \forall i \ge i_0, X_i =
1}$, whose complement is
$$
{\forall i_0 \in \Bbb{N} : \exists i \ge i_0, X_i > = 0}
= \limsup_i {X_i = 0}.
$$
To apply Borel-Cantelli, one has to determine whether $\sum_i P(X_i =
0)<+\infty$.
Weak LLN Practice
Posted on December 2, 2018
(Last modified on February 17, 2021)
| 1 minutes
|
|
0 comment
My intended answer to a weak LLN problem on Math.SE.
Problem: Suppose $(X_n)$ is a sequence of r.v’s satisfying $P(X_n=\pm\ln
(n))=\frac{1}{2}$ for each $n=1,2\dots$. I am trying to show that $(X_n)$
satisfies the weak LLN.
The idea is to show that $P(\overline{X_n}>\varepsilon)$ tends to 0, but I am
unsure how to do so.
My solution: As in the accepted answer in OP’s previous question
https://math.stackexchange.com/q/3021650/290189, I’ll assume the independence
of $(X_n)$. By Chebylshev’s inequality,
[Read More]
Mesurabilité des réalisations trajectorielles
$X: \omega \mapsto X(\cdot, \omega) \in \mathcal{M}((\Omega, \mathcal{A}), (\CO(\Bbb{T},\R), \Bor{\CO}))$
Posted on October 11, 2018
(Last modified on February 16, 2021)
| 5 minutes
|
|
0 comment
Notations
Supposons toutes les notations dans Espace de trajectoires.
Problématique
La mesurabilité de l’application dans le sous-titre est basée sur l’égalité
suivante.
$$
\Bor{\R}{\OXT} \cap \CO = \Bor{\CO}
$$
J’ai passé quatres heures pour comprendre
- pourquoi ça entraîne la mesurabilité ?
- pourquoi l’égalité elle-même est vraie ?
Réponses
Mesurabilité de la trace sur $\CO$ de $\Bor{\R}{\OXT}$
A la première lecture, je ne connaisais même pas la définition de la trace
d’une tribu sur un emsemble. En effet, c’est une définition universaire sur
des ensembles, selon une question sur la trace sur Math.SE.
[Read More]
2018-10-04 Seminar Notes
Posted on October 4, 2018
(Last modified on February 16, 2021)
| 3 minutes
|
|
0 comment
I jotted down only a few keywords that might be reusable. I didn’t understand
any of the talks.
Functional Data Analysis
- Goal: predict equipment temperature
- Tools: Fourier coefficients (trigo ones), followed by discretisation,
min-error estimation, cross-validation 10-folds, $R^2$ adjusted ?, MAE, MSPE
- Comparison with non-functional data
Tolérancement
- Thème : Traiter les incertitudes sur les dimensions des pièces de l’avion
- Objectif :
- établir une modélisation mathématiques
- construire un virtual twin de l’avion
- Outils :
- Modèle de variabilité
- Modèle d’assemblage $\text{airbus}: Y = \sum_{i = 1}^n a_iX_i?$
- Notion de risque … calculs des coefficients de convolution
SVM
- Multiclass vs structual, hidden Markov model
- Plan for this year:
- apply structual SVM for real SVM
- apply structual SVM for deep neural network
- auxiliary function given in one partition
- auxiliary function given in mutiple partitions
- bootstrap
- law of iterated logarithms
- Kullback–Leibler distance
- convergence: Donsker class, var, covar
- ranking ration method: convergence to Gaussian process, entropy conditions,
Telegrandś inequality
- weak convergence: KMT, Berthet-Maison
- strong convergence: ?
- consequences: Berry-Essen bound, bias & variance estimation of ranking
ration method
Euler scheme SDE
I could only write “Toeplitz tape operator”.
[Read More]
Measures Are Regular
Some remarks on constructing the $\sigma$-algebra
Posted on October 3, 2018
(Last modified on February 16, 2021)
| 3 minutes
|
|
0 comment
Problem
To show that a measure $\mu$ defined on a metric space $(S,d)$ is regular.
- outer regularity: approximation by inner closed sets
- inner regularity: approximation by outer open sets
Discussion
Since this problem involves all borel sets $A \in \mathcal{B}(S)$, the direct
way $\forall A \in \mathcal{B}(S), \dots$ won’t work. We have to use the
indirect way: denote $$\mathcal{C} = \lbrace A \in \mathcal{B}(S) \mid
\mathinner{\text{desired properties}} \dots \rbrace.$$ Show that
[Read More]
Espace de trajectoires
Comparaison des références
Posted on September 28, 2018
(Last modified on February 16, 2021)
| 2 minutes
|
|
0 comment
Tribu produit
source |
symbole |
engendrée par |
Prof |
$\Er{\OXT}$ |
$\mathcal{C}_0 = \Big\lbrace \lbrace f \in E^\Bbb{T} \mid f(t) \in B \rbrace \bigm\vert t \in \Bbb{T}, B \in \Er \Big\rbrace$ $\mathcal{C}_1 = \Big\lbrace \lbrace f \in E^\Bbb{T} \mid f(t_i) \in B_i \forall i \in \lbrace 1,\dots,n \rbrace \rbrace \newline \bigm\vert t_j \in \Bbb{T}, B_j \in \Er \forall j \in \lbrace 1,\dots,n \rbrace, n \in \N^* \Big\rbrace$ |
Meyre |
$\bigotimes_{t \in \Bbb{T}} \Er$ |
des cylindres $C = \prod_{t \in \Bbb{T}} A_t$ d’ensembles mesurables $A_t \in \Er$ de dimension finie $\card{\lbrace t \in \Bbb{T} \mid A_t \neq E \rbrace} < \infty$ |
Je trouve $\Er{\OXT}$ plus court à écrire, tandis que
$\bigotimes_{t \in \Bbb{T}} \Er$ est plus flexible.
[Read More]
$\pi$–$\lambda$ Theorem
Monotone Class Lemma
Posted on September 19, 2018
(Last modified on April 25, 2019)
| 2 minutes
|
|
0 comment
Statement
Slogan version
$$\sigma = \pi + \lambda$$
$\sigma$ |
$\pi$ |
$\lambda$ |
“sum” |
“product” |
“limit” |
universe |
nonempty |
universe |
complement |
|
complement |
countable union |
finite intersection |
disjoint countable union |
A $\sigma$-algebra is a $\pi$-system and a $\lambda$-system, and vice versa.
Wiki version
A $\lambda$-system is a synonym of a Dykin system.
$$\mathcal{P} \subseteq \mathcal{D} \Longrightarrow \sigma(\mathcal{P})
\subseteq \mathcal{D}$$
Given a $\pi$-system contained in a $\lambda$-system. Then the
$\sigma$-algebra generated by the $\pi$-system is also contained in the
$\lambda$-system.
[Read More]