2018-10-04 Seminar Notes

I jotted down only a few keywords that might be reusable. I didn’t understand any of the talks.

Functional Data Analysis

  • Goal: predict equipment temperature
  • Tools: Fourier coefficients (trigo ones), followed by discretisation, min-error estimation, cross-validation 10-folds, $R^2$ adjusted ?, MAE, MSPE
  • Comparison with non-functional data

Tolérancement

  • Thème : Traiter les incertitudes sur les dimensions des pièces de l’avion
  • Objectif :
    • établir une modélisation mathématiques
    • construire un virtual twin de l’avion
  • Outils :
    • Modèle de variabilité
    • Modèle d’assemblage $\text{airbus}: Y = \sum_{i = 1}^n a_iX_i?$
    • Notion de risque … calculs des coefficients de convolution

SVM

  • Multiclass vs structual, hidden Markov model
  • Plan for this year:
    • apply structual SVM for real SVM
    • apply structual SVM for deep neural network

Auxiliary information

  • auxiliary function given in one partition
  • auxiliary function given in mutiple partitions
  • bootstrap
  • law of iterated logarithms
  • Kullback–Leibler distance
  • convergence: Donsker class, var, covar
  • ranking ration method: convergence to Gaussian process, entropy conditions, Telegrandś inequality
    • weak convergence: KMT, Berthet-Maison
    • strong convergence: ?
      • consequences: Berry-Essen bound, bias & variance estimation of ranking ration method

Euler scheme SDE

I could only write “Toeplitz tape operator”.

[Read More]