I jotted down only a few keywords that might be reusable. I didn’t understand any of the talks.
Functional Data Analysis
- Goal: predict equipment temperature
- Tools: Fourier coefficients (trigo ones), followed by discretisation, min-error estimation, cross-validation 10-folds, $R^2$ adjusted ?, MAE, MSPE
- Comparison with non-functional data
Tolérancement
- Thème : Traiter les incertitudes sur les dimensions des pièces de l’avion
- Objectif :
- établir une modélisation mathématiques
- construire un virtual twin de l’avion
- Outils :
- Modèle de variabilité
- Modèle d’assemblage $\text{airbus}: Y = \sum_{i = 1}^n a_iX_i?$
- Notion de risque … calculs des coefficients de convolution
SVM
- Multiclass vs structual, hidden Markov model
- Plan for this year:
- apply structual SVM for real SVM
- apply structual SVM for deep neural network
Auxiliary information
- auxiliary function given in one partition
- auxiliary function given in mutiple partitions
- bootstrap
- law of iterated logarithms
- Kullback–Leibler distance
- convergence: Donsker class, var, covar
- ranking ration method: convergence to Gaussian process, entropy conditions,
Telegrandś inequality
- weak convergence: KMT, Berthet-Maison
- strong convergence: ?
- consequences: Berry-Essen bound, bias & variance estimation of ranking ration method
Euler scheme SDE
I could only write “Toeplitz tape operator”.
[Read More]