Existence of Four Triangle Centers
A vector proof
Settings Let
$P$ be an arbitrary reference point. $\triangle ABC$ be a triangle. $\vec{a} = \overrightarrow{PA}$, $\vec{b} = \overrightarrow{PB}$, $\vec{c} = \overrightarrow{PC}$ Remark: $O$ is reserved for circumcenter.
symbol name meaning $G$ centroid center of gravity $H$ orthocenter three “heights” are concurrent $I$ incenter center of inscribed circle $O$ circumcenter center of circumscribed circle Centroid Verify that $(\vec{a} + \vec{b} + \vec{c})/3$ satisfy the constraints.
Orthocenter Let
$H$ be the point of intersection of two altitudes $AA_H$ and $BB_H$ $\vec{h} = \overrightarrow{PH}$ \begin{align} (\vec{h} - \vec{a}) \cdot (\vec{b} - \vec{c}) &= 0 \\ (\vec{h} - \vec{b}) \cdot (\vec{c} - \vec{a}) &= 0 \end{align} Add these two equations together.
[Read More]