Existence of Four Triangle Centers

A vector proof

Settings

Let

  • $P$ be an arbitrary reference point.
  • $\triangle ABC$ be a triangle.
  • $\vec{a} = \overrightarrow{PA}$, $\vec{b} = \overrightarrow{PB}$, $\vec{c} = \overrightarrow{PC}$

Remark: $O$ is reserved for circumcenter.

symbol name meaning
$G$ centroid center of gravity
$H$ orthocenter three “heights” are concurrent
$I$ incenter center of inscribed circle
$O$ circumcenter center of circumscribed circle

Centroid

Verify that $(\vec{a} + \vec{b} + \vec{c})/3$ satisfy the constraints.

Orthocenter

Let

  • $H$ be the point of intersection of two altitudes $AA_H$ and $BB_H$
  • $\vec{h} = \overrightarrow{PH}$
\begin{align} (\vec{h} - \vec{a}) \cdot (\vec{b} - \vec{c}) &= 0 \\ (\vec{h} - \vec{b}) \cdot (\vec{c} - \vec{a}) &= 0 \end{align}

Add these two equations together.

[Read More]