Statement
Slogan version
$$\sigma = \pi + \lambda$$
$\sigma$ $\pi$ $\lambda$ “sum” “product” “limit” universe nonempty universe complement complement countable union finite intersection disjoint countable union A $\sigma$-algebra is a $\pi$-system and a $\lambda$-system, and vice versa.
Wiki version
A $\lambda$-system is a synonym of a Dykin system.
$$\mathcal{P} \subseteq \mathcal{D} \Longrightarrow \sigma(\mathcal{P}) \subseteq \mathcal{D}$$
Given a $\pi$-system contained in a $\lambda$-system. Then the $\sigma$-algebra generated by the $\pi$-system is also contained in the $\lambda$-system.
Wiki provided two equivalent definitions of a $\lambda$-system. Both of them involve a sequence of sets $(A_n)_n$ in $\mathcal{D}$. The differences are:
- $(A_n)_n$ is incresing
- $A_n$’s are pairwise disjoint
Their target is $\bigcup_n A_n \in \mathcal{D}$. Actually, the trick in #3 below shows that these two definitions mean the same thing.
Equivalence
$(S) \Rightarrow (W)$
Given $P \in \mathcal{P} \subseteq \mathcal{D}$.
-
universe: $\Omega \in \mathcal{D}$
-
stability under complement: $P^\complement \in \mathcal{D}$
-
stability under countable union:
Given $P_k \in \mathcal{D}$, $k \in \lbrace 1, \ldots,n \rbrace$. To make some pairwise disjoint sets $P^\prime_n$ so that $\bigcup_n P_n = \bigcup_n P^\prime_n$, set $P^\prime_n = P_n \setminus \left( \bigcup_{k=1}^{n-1} P_k \right)$ (i.e. $n$-th new contribution to the existing union $\bigcup_{k=1}^{n-1} P_k$). Verify that $P^\prime_n \in \mathcal{D}$ for all $n \in \N^*$.
I find #3 a bit tricky.
$(W) \Rightarrow (S)$
A $\sigma$-algebra is always a $\pi$-system and a $\lambda$-system.
Given a $\pi$-system $\mathcal{D}$ that is also a $\lambda$-system. Apply $(W)$ taking $\mathcal{P} = \mathcal{D}$. We arrive at $\sigma(\mathcal{D}) = \mathcal{D}$.
Examples
- $\pi$-system:
- nested intervals: $\mathcal{\mathcal{P}}_1 = \lbrace (-\infty,x) \mid x \in \R \rbrace$
- singletons: $\mathcal{\mathcal{P}}_2 = \lbrace \lbrace x \rbrace \in \Omega \rbrace \cup \lbrace \varnothing \rbrace$
- rectangles: $\mathcal{\mathcal{P}}_3 = \lbrace \mathcal{P}_1 \times \mathcal{P}_2 \mid \mathcal{P}_1,\mathcal{P}_2 \in \mathcal{\mathcal{P}}(\Omega) \rbrace$
- $\lambda$-system:
- to be continued…