- Ultra filter
- A filer $\mathcal{F}$ containing either $Y$ or $Y^\complement$ for any $Y \subseteq X$.
Two days ago, I spent an afternoon to understand Dudley’s proof of this little result.
A filter is contained in some ultrafilter. A filter is an ultrafilter iff it’s maximal.
At the first glance, I didn’t even understand the organisation of the proof! I’m going to rephrase it for future reference.
-
only if: let $\mathcal{F}$ be an ultrafilter contained in another filter $\mathcal{G}$. If $\mathcal{F}$ isn’t maximal, let $Y \in \mathcal{G} \setminus \mathcal{F}$. Since $\mathcal{F}$ is an ultrafilter, either $Y \in \mathcal{F}$ or $Y^\complement \in \mathcal{F}$. By construction of $Y$, only the later option is possible, so $Y^\complement \in \mathcal{G}$ by hypothesis, but this contradicts our assumption $Y \in \mathcal{G}$: $\varnothing = Y \cap Y^\complement \in \mathcal{G}$, which is false since $\mathcal{G}$ is a filter.
[Read More]