Simplex Calculations for Stokes' Theorem
Posted on November 3, 2018
(Last modified on February 17, 2021)
| 3 minutes
|
|
0 comment
- Oriented affine k-simplex σ=[p0,p1,…,pk]
- A k-surface given by the affine function
σ(i=1∑kaiei):=p0+i=1∑kai(pi−p0),(1)
where pi∈Rn for all i∈{1,…,k}.
In particular, σ(0)=p0 and for each i∈{1,…,k},
σ(ei)=pi.
- Standard simplex Qk:=[0,e1,…,ek]
- A particular type of oriented affine k-simplex with the standard basis
{e1,…,ek} of Rk.
Qk:={i=1∑kaiei∀i∈{1,…,k},ai≥0,i=1∑kai=1}
Note that an oriented affine k-simplex σ has parameter domain
Qk.
[Read More]