Goal
To gain a real understanding on real numbers.
Analytical construction
I “swallowed” the Compleness Axiom, then I worked on exercises on $\sup$ and $\inf$, and then the $\epsilon$-$\delta$ criterion for limits, before completing $\Q$ with Cauchy sequences.
I’ve also heard about the completion of a metric space in a more general setting. My professor once said that it suffices to view this proof once throughout lifetime: the proof itself wasn’t very useful.
The basic arithmetic properties of $\R$, as an equivalence class of Cauchy sequences sharing the same limits, didn’t arouse our interests. That’s just an extension of its rational counterpart due to some arithmetic properties of limits.
[Read More]