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Generalized Cauchy–Schwarz Inequality

Review: AM–GM Inequality

For any positive real numbers
𝑎1, …, 𝑎𝑛,

(∏
𝑛

𝑘=1
𝑎𝑖)

1/𝑛

⏟⏟⏟⏟⏟
geometric mean

of 𝑎1,…,𝑎𝑛

≤ 1
𝑛

(∑
𝑛

𝑘=1
𝑎𝑖)

⏟⏟⏟⏟⏟
arithmetic mean

of 𝑎1,…,𝑎𝑛

Equality holds if and only if all
𝑎1 = ⋯ = 𝑎𝑛.
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Equality holds if and only if all
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Proof. (by replacement) If all 𝑎𝑖’s are
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𝑎𝑖 < 𝛼 < 𝑎𝑗.
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“arithmetic mean”)
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arithmetic mean of 𝑎1,…,𝑎𝑛

.

Then there exists 𝑖 and 𝑗⏟
indices

 such that

𝑎𝑖 < 𝛼 < 𝑎𝑗.
𝑎𝑖 ⟵ 𝛼⏟

𝑎𝑖 replaced by 𝛼

, 𝑎𝑗 ⟵ 𝑎𝑖 + 𝑎𝑗 − 𝛼,

so after this replacement process,
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Generalized Cauchy–Schwarz Inequality

old AM = new AM, but
old GM < new GM because

𝑎𝑖𝑎𝑗 < 𝛼(𝑎𝑖 + 𝑎𝑗 − 𝛼)

⇔ (𝛼 − 𝑎𝑖)(𝛼 − 𝑎𝑗) < 0.
After this replacement, in the new
AM we have at least one less
number not equal to 𝛼,
This process can be repeated until
all 𝑎𝑖’s are equal (to 𝛼), then

final GM = 𝛼.
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Generalized Cauchy–Schwarz Inequality

Hence
initial AM = 𝛼 = final GM
≥ new GM > initial GM.

 □
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Generalized Cauchy–Schwarz Inequality

Generalized Cauchy–Schwarz Inequality

[
[[
[
[

𝑎𝑖𝑗

]
]]
]
]

𝑛×𝑚

P

[
[[
[
[

𝒂𝑗

]
]]
]
]

𝑛×𝑚

PPP

PP‖𝒂𝑗‖𝑚
PPP

2. product of all column
ℓ𝑚 norms ‖𝒂𝑗‖𝑚

PΠ(𝑖) PPP

2. sum of all row
products ∏(𝑖)’s

∑

≤

1. product of all
entries in 𝑖-th row

 

1. ℓ𝑚-norm of 𝑗-th
column, i.e.

(∑
𝑛

𝑖=1
𝑎𝑚

𝑖𝑗 )
1/𝑚
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Generalized Cauchy–Schwarz Inequality

Question: How to remember this inequality?
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Generalized Cauchy–Schwarz Inequality

Question: How to remember this inequality?

• ‘⟶’ linked with ‘∏’ as ‘H’ in “Horizontal” looks like ‘∐∏’

• ‘↓’ linked with ‘∑’ as two ‘V’s (“Vertical”) looks like ‘
VV ’

Orders of arrows in each side:
• LHS: natural reading order (“less strange”)

1. “left ⟶ right” first
2.

then 
top
↓

bottom

• RHS: “more strange” reading order

1. top
↓

bottom
 first

2. then “left ⟶ right”
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Generalized Cauchy–Schwarz Inequality

Proof step 1: homogeneity on each column

Overall strategy is similar to the proof of Hölder’s inequality.
Observe that in the target inequality

∑
𝑛

𝑖=1
∏
𝑚

𝑗=1
𝑎𝑖𝑗 ≤ ∏

𝑚

𝑗=1
(∑

𝑛

𝑖=1
𝑎𝑚

𝑖𝑗 )
1/𝑚

,

if we multiply (the entries of) the 𝑗-th column by a positive constant 𝑘
(i.e. for each 𝑖 ∈ {1, …, 𝑛} and a particular fixed 𝑗 ∈ {1, …, 𝑛}, 𝑎𝑖𝑗 ⟵
𝑘𝑎𝑖𝑗), each side of the above inequality is also multiplied by 𝑘.
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WLOG (without loss of generality), we can assume that the 𝑗-th column
is normalized, i.e. ‖𝒂𝒋‖𝑚

= 1.
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,

WLOG (without loss of generality), we can assume that the 𝑗-th column
is normalized, i.e. ‖𝒂𝒋‖𝑚

= 1. The same goes for the remaining
columns. Then the RHS becomes 1.
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Generalized Cauchy–Schwarz Inequality

Proof step 2: AM–GM on each row product

PP ∏
𝑚

𝑗=1
𝑎𝑖𝑗 PPP ≤ PP 1

𝑚
∑
𝑚

𝑗=1
𝑎𝑚

𝑖𝑗 PPP

GM(𝑎𝑚
𝑖1 , …, 𝑎𝑚

𝑖𝑚)
 

AM(𝑎𝑚
𝑖1 , …, 𝑎𝑚

𝑖𝑚)
Guide:
1. ‘∑𝑖 PP ∏𝑗 𝑎𝑖𝑗 PPP’ in LHS of previous slide seems hard, so tackle each row

product PP ∏𝑗 𝑎𝑖𝑗 PPP with AM–GM first. A “product” reminds us of
“geometric mean”.

2. The power ‘𝑚’ (in superscript) and the ‘∑’ in RHS of previous slide
seems to be an arithmetic mean.
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Generalized Cauchy–Schwarz Inequality

Proof step 3: make LHS appear

In target LHS, we have ‘∑𝑖’ on the left of ‘∏𝑗’, so take ‘∑𝑖’ on both
sides of the inequality in the previous step.

∑
𝑛

𝑖=1
∏
𝑚

𝑗=1
𝑎𝑖𝑗 ≤ ∑

𝑛

𝑖=1

1
𝑚

∑
𝑚

𝑗=1
𝑎𝑚

𝑖𝑗
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Generalized Cauchy–Schwarz Inequality

Equality case

We’ve applied the AM–GM inequality to each row product, so equality holds if and
only if all entries in each row are equal,
i.e. 𝑎𝑖1 = ⋯ = 𝑎𝑖𝑚 for all (row index) 𝑖 ∈ {1, …, 𝑛}.
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equal.
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Equality case

We’ve applied the AM–GM inequality to each row product, so equality holds if and
only if all entries in each row are equal,
i.e. 𝑎𝑖1 = ⋯ = 𝑎𝑖𝑚 for all (row index) 𝑖 ∈ {1, …, 𝑛}.
In this case, each corresponding component in any two distinct column vectors is
equal.
i.e. for all (row index) 𝑖 ∈ {1, …, 𝑛} and (column indices) 𝑗, 𝑗′ ∈ {1, …, 𝑚}, 𝑎𝑖𝑗 = 𝑎𝑖𝑗′ .
Two vectors are equal to each other if and only if each of their corresponding
components are equal.
Since we have normalized each column in the first step of our proof, we
have equality holds if and only if all column vectors in the matrix
are parallel to each other.
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Generalized Cauchy–Schwarz Inequality

Corollary: Carlson’s inequality

∑𝑛
𝑖=1

𝑚√∏𝑚
𝑗=1 𝑎𝑖𝑗

𝑛
≤ 𝑚

√
√√
√

∏
𝑚

𝑗=1

∑𝑛
𝑖=1 𝑎𝑖𝑗

𝑛
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Generalized Cauchy–Schwarz Inequality

Corollary: Carlson’s inequality

∑𝑛
𝑖=1

𝑚√∏𝑚
𝑗=1 𝑎𝑖𝑗

𝑛
≤ 𝑚

√
√√
√

∏
𝑚

𝑗=1

∑𝑛
𝑖=1 𝑎𝑖𝑗

𝑛

Proof.  Apply the generalized Cauchy–Schwarz inequality to the matrix

[
[
[
[𝑎1/𝑚

11 /𝑛
⋮

𝑎1/𝑚
𝑛1 /𝑛

⋯
⋱
⋯

𝑎1/𝑚
1𝑚 /𝑛

⋮
𝑎1/𝑚

𝑛𝑚 /𝑛]
]
]
]

.

 □
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Generalized Cauchy–Schwarz Inequality

Application: avoid fractional powers

The figure in the slide for the generalized Cauchy–Schwarz inequality is
often too difficult to apply on questions. In practice, we often take the 𝑚
-th power on both sides to avoid fractional powers.

i.e. (∑
𝑛

𝑖=1
∏
𝑚

𝑗=1
𝑎𝑖𝑗)

𝑚

≤ ∏
𝑚

𝑗=1
(∑

𝑛

𝑖=1
𝑎𝑚

𝑖𝑗 ).

The following question is a good example to illustrate how arranging
terms in the form of a matrix can help organizing thoughts.
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Generalized Cauchy–Schwarz Inequality

Example: optimization of sum of reciprocals

Example.  Let 0 < 𝜃 < 𝜋/2. Find the minimum value of 2
sin 𝜃 + 3

cos 𝜃 .
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Discussion:
1. Constraint: Pythagorean

identity sin2 𝜃 + cos2 𝜃 = 1.
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3. Tricky part:
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rightmost column norm (on RHS)
doesn’t match the (equality)
constraint in point 1.
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2. Objective function should stay

on RHS.
3. Tricky part:

[
2

sin 𝜃
3

cos 𝜃

2
sin 𝜃

3
cos 𝜃

sin2 𝜃
cos2 𝜃

].

Problem: #col = 𝑚 = 3, so
rightmost column norm (on RHS)
doesn’t match the (equality)
constraint in point 1.
Quickfix: adjust the power of each
term by taking the 𝑚-th root

i.e.
[
[
[( 2

sin 𝜃)1/3

( 3
cos 𝜃)1/3

( 2
sin 𝜃)1/3

( 3
cos 𝜃)1/3

sin2/3 𝜃
cos2/3 𝜃]

]
].
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Generalized Cauchy–Schwarz Inequality

Problem solving flow for minimization problems

It would be hard to get the final matrix at the first sight, so I suggest the following steps (to “get the
row product right” first).
0. Get rid of fractional powers (by writing a logically equivalent inequality with only integer powers).
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Problem solving flow for minimization problems

It would be hard to get the final matrix at the first sight, so I suggest the following steps (to “get the
row product right” first).
0. Get rid of fractional powers (by writing a logically equivalent inequality with only integer powers).
1. Identify the relevant equality constraint (, which is independent of the choice of matrix).
2. Identify each term in the objective function, and place each of them in a row. Now you have two

columns.
3. Make suitable amount of copies of columns, so that each row product are “balanced”, i.e. your row

products are constants/terms on the RHS of the target inequality.
4. Count the number of columns, and take this number as 𝑚.
5. Take the 𝑚-th root of each term in the matrix (, so that the rightmost column norm matches the

equality constraint.)
6. Apply the generalized Cauchy–Schwarz inequality to the matrix.
7. State the equality case.

12 / 17



Generalized Cauchy–Schwarz Inequality

Practice: generalization of previous example

Exercise.  If 𝑎, 𝑏 > 0, 𝑛 ∈ ℕ, 0 < 𝜃 < 𝜋/2, show that

(𝑎2/(𝑛+2) + 𝑏2/(𝑛+2))(𝑛+2)2 ≤ 𝑎
sin𝑛 𝜃

+ 𝑏
cos𝑛 𝜃

.
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(𝑎2/(𝑛+2) + 𝑏2/(𝑛+2))(𝑛+2)2 ≤ 𝑎
sin𝑛 𝜃

+ 𝑏
cos𝑛 𝜃

.

Hint:
• two columns of [𝑎/ sin𝑛 𝜃

𝑏/ cos𝑛 𝜃]
• 𝑛 columns of [cos2 𝜃

sin2 𝜃]
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Generalized Cauchy–Schwarz Inequality

Practice: Power Mean Inequality for integer power

Exercise.  For any positive real numbers 𝑎1, …, 𝑎𝑛 and positve integer 𝑝 > 0,
show that

(
∑𝑛

𝑖=1 𝑎𝑝
𝑖

𝑛
)

1/𝑝

≥
∑𝑛

𝑖=1 𝑎𝑖

𝑛
.
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Exercise.  For any positive real numbers 𝑎1, …, 𝑎𝑛 and positve integer 𝑝 > 0,
show that

(
∑𝑛

𝑖=1 𝑎𝑝
𝑖

𝑛
)

1/𝑝

≥
∑𝑛

𝑖=1 𝑎𝑖

𝑛
.

Solution.  Apply the generalized Cauchy–Schwarz inequality to the matrix

[
[
[𝑎1

⋮
𝑎𝑛

1
⋮
1

⋯
⋱
⋯

1
⋮
1]
]
]

with 𝑝 − 1 columns of 1’s.
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Generalized Cauchy–Schwarz Inequality

Variation: Generalized Titu’s Lemma

For any real numbers 𝑎1, …, 𝑎𝑛, positive real numbers 𝑏1, …, 𝑏𝑛, positive
integers 𝑚, 𝑘 ∈ ℕ such that 𝑘 > 𝑚,

∑
𝑛

𝑖=1

𝑎𝑘
𝑖

𝑏𝑚
𝑖

≥ 𝑛1+𝑚−𝑘
(∑𝑛

𝑖=1 𝑎𝑖)
𝑘

(∑𝑛
𝑖=1 𝑏𝑖)

𝑚 .
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Generalized Cauchy–Schwarz Inequality

Variation: Generalized Titu’s Lemma

For any real numbers 𝑎1, …, 𝑎𝑛, positive real numbers 𝑏1, …, 𝑏𝑛, positive
integers 𝑚, 𝑘 ∈ ℕ such that 𝑘 > 𝑚,

∑
𝑛

𝑖=1

𝑎𝑘
𝑖

𝑏𝑚
𝑖

≥ 𝑛1+𝑚−𝑘
(∑𝑛

𝑖=1 𝑎𝑖)
𝑘

(∑𝑛
𝑖=1 𝑏𝑖)

𝑚 .

Proof.  Focus on the “draft matrix”

[
[
[𝑎𝑘

1/𝑏𝑚
1

⋮
𝑎𝑘

𝑛/𝑏𝑚
𝑛

𝑏1
⋮

𝑏𝑛

⋯
⋱
⋯

𝑏1
⋮

𝑏𝑛

1
⋮
1

⋯
⋱
⋯

1
⋮
1]
]
]

with 𝑚 columns of 𝑏’s and 𝑘 − 1 − 𝑚 columns of 1’s.  □
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Generalized Cauchy–Schwarz Inequality

Last example

Most other questions are direct consequences of the previous lemma, including the
following:
Exercise.  For any 𝑎, 𝑏, 𝑐 > 0 satisfying 𝑎𝑏𝑐 = 1, and positive 𝑘 ≥ 2, show that

∑
cyc

1
𝑎𝑘(𝑏 + 𝑐)

≥ 3
2
.
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Most other questions are direct consequences of the previous lemma, including the
following:
Exercise.  For any 𝑎, 𝑏, 𝑐 > 0 satisfying 𝑎𝑏𝑐 = 1, and positive 𝑘 ≥ 2, show that

∑
cyc

1
𝑎𝑘(𝑏 + 𝑐)

≥ 3
2
.

Attempt: Replace the numerator on LHS by 𝑎𝑏𝑐. Then

LHS = ∑
cyc

(1
𝑎)𝑘−1

1
𝑏 + 1

𝑐
≥

(∑cyc
1
𝑎)

𝑘−1

2 ∑cyc
1
𝑎

= 1
2

⋅ 31+1−(𝑘−1) ⋅ (∑
cyc

1
𝑎
)

𝑘−2

P ≥ PPP 1
2

⋅ 3(3−𝑘)+(𝑘−2)

Problem: To apply the generalized Cauchy–Schwarz inequality, we need 𝑘 − 1 > 1, i.e.
𝑘 > 2. The author of the original article doesn’t address the case when 𝑘 = 2,

AM–GM inequality
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Generalized Cauchy–Schwarz Inequality

Last example (continued)

which turns out to be the Nesbitt’s inequality:
For any positive real numbers 𝑎, 𝑏, 𝑐, we have

∑
cyc

𝑎
𝑏 + 𝑐

≥ 3
2
.

Observe that the above inequality is homogeneous, so WLOG, we can
assume 𝑎 + 𝑏 + 𝑐 = 1. Then it’s equivalent to

∑
cyc

𝑎 + 𝑏 + 𝑐
𝑏 + 𝑐

≥ 3
2

+ 3.

The numerator on LHS is 1 = 12, so that Titu’s Lemma can be used.
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