#import "@preview/touying:0.6.1": * #import themes.university: * #import "@preview/cetz:0.4.2" #import "@preview/fletcher:0.5.8" as fletcher: node, edge #let cetz-canvas = touying-reducer.with(reduce: cetz.canvas, cover: cetz.draw.hide.with(bounds: true)) #let fletcher-diagram = touying-reducer.with(reduce: fletcher.diagram, cover: fletcher.hide) #show: university-theme.with( aspect-ratio: "16-9", config-info( title: [Melon's test prep.], subtitle: [Typst touying slides], author: [Vincent Tam], date: datetime.today(), institution: [vin100 數學自學中心], logo: image("vin100_logo.svg", width: 20%), ), footer-a: self => [#self.info.author (#self.info.institution)] ) #title-slide() = Animation 動畫 \ アニメーション == Simple Animation 簡單動畫 #v(10pt) If $display((5a+14b)/(4a+5b)) = 2$, compute $display((3a^2+4b^2)/(7 a b))$. #pause Solution: $ (5a+14b)/(4a+5b) =& 2 \ pause 5a + 14b =& 2(4a+5b) \ pause =& 8a + 10b \ pause 4b =& 3a \ b =& 3a slash 4 $ == Question Suppose that two distinct nonzero real numbers $x$ and $y$ satisfy $ 2x + 3/(4x) = 2y + 3/(4y). $ What is the value of $x y$? #pause Solution: $ 2(x-y) =& 3/4 (1/y - 1/x) pause = 3/4 dot.c (x-y)/(x y) \ pause x y =& 3 slash 8 $ = Misc. 雜項 == 2-col., CeTZ, fletcher animation #slide(composer: (1fr, 1fr))[ $ x^2=sqrt(6)+sqrt(7), x^4 + 1/x^4 = ? $ #pause #let lbl1 = text(fill: red, $a$) #let lbl2 = text(fill: blue, $b$) #let side-label = $#lbl1 + #lbl2$ #align(center, cetz-canvas({ import cetz.draw: * rect((0, 0), (5, 5)) rect((0, 0), (2, 2), name: "asq", stroke: 3pt + red) rect((2, 2), (5, 5), name: "bsq", stroke: 3pt + blue) // long content( ((0, 0), 50% ,(0, 5)), angle: 90deg, side-label, padding: .2, anchor: "south", ) content( ((0, 0), 50% ,(5, 0)), side-label, padding: .2, anchor: "north", ) (pause,) content( ((0, 5), 50%, (2, 5)), lbl1, padding: .2, anchor: "south", ) content( ((2, 5), 50%, (5, 5)), lbl2, padding: .2, anchor: "south", ) content( ((5, 0), 50%, (5, 2)), lbl1, angle: 90deg, padding: .2, anchor: "north", ) content( ((5, 2), 50%, (5, 5)), lbl2, angle: 90deg, padding: .2, anchor: "north", ) // areas content(((0, 0), 50%, (2, 2)), text(fill: red, $a^2$)) content(((2, 2), 50%, (5, 5)), text(fill: blue, $b^2$)) content(((0, 2), 50%, (2, 5)), lbl1 + lbl2) content(((2, 0), 50%, (5, 2)), lbl1 + lbl2) })) ][ #fletcher-diagram( node-stroke: 0.05em, spacing: 1.5em, node((0,0), pad(rest:0.3em, align(left, [$a^2+b^2$ with \ $a = x^2, b = 1/a$])), shape: rect), pause, edge("d", "<|-", [can solve], label-side: left), node((0,1), pad(rest: 0.3em, $(a+b)^2$)), pause, edge("d", "-|>", [only need], label-side: left), node((0,2), pad(rest: 0.3em, align(left, [$a+b$ with \ $a = sqrt(k)+sqrt(k+1)$])), shape: rect), ) #pause $&((sqrt(a+1)+sqrt(a))^2+1)/(sqrt(a+1)+sqrt(a)) \ #only("6", $=& (a+1+a+2sqrt(a(a+1))+1)/(sqrt(a+1)+sqrt(a))$) #only("7", $=& (2a+2+2sqrt(a(a+1)))/(sqrt(a+1)+sqrt(a))$) #only("8", $=& (2sqrt(a+1)(sqrt(a+1)+sqrt(a)))/(sqrt(a+1)+sqrt(a))$) #only("9", $=& 2sqrt(a+1)$) $ ] = Callback Style Animation == Question 4 #slide( repeat: 6, self => [ #let (uncover, only, alternatives) = utils.methods(self) Evaluate $sqrt(9-sqrt(14)-sqrt(23-sqrt(504)))$. $ #uncover("2-")[ $ & sqrt(9-sqrt(14)-sqrt(23-sqrt(504))) \ =& sqrt(9-sqrt(14)-sqrt(14 + 9 -2 sqrt(14 dot.c 9))) \ $ ] #uncover("3-")[$ =& sqrt(6-sqrt(14)-(sqrt(14)-3)) \ $] #uncover("4-")[$ =& sqrt(9-2sqrt(14)) \ $] #uncover("5-")[$ =& sqrt(7 + 2 - 2sqrt(7 dot.c 2)) \ $] #uncover("6-")[$ =& sqrt(7)-sqrt(2) $] $ ], ) == Final Question #slide( repeat: 4, self => [ #let (uncover, only, alternatives) = utils.methods(self) Evaluate $display((2028^2+2022^2-18)/2025^2)$. #uncover("2-")[Let $x = 2025$. Then] $ #uncover("2-")[ $ (2028^2+2022^2-18)/2025^2 &= ((x+3)^2+(x-3)^2-18) / x^2 \ $ ] #uncover("3-")[ $ &= ((x^2+6x+9)+(x^2-6x+9)-18) / x^2 \ $ ] #uncover("4-")[$ &= 2 $] $ ] )